Adding ClearSCADA raw data functions.

This commit is contained in:
Michael Van Ryn 2023-06-14 11:21:58 -06:00
parent 8dbb030dd9
commit 06a6d5aa88
4 changed files with 266 additions and 76 deletions

View File

@ -1,2 +1,3 @@
# StandardTemplate
# VTScada-HistoricalTools
Key Point: In the tags list file, the Source Name field is the unique identifier for the tag name to query. In VTScada this can be something like ```temp\old_value1```. In ClearSCADA, it will be the unique point ID, ex. ```005152```. The leading zeroes can be left out as the script will pad them in front of the integere to determine the correct path.

View File

@ -1,17 +1,17 @@
Source Name,Destination Name,Data Type,Scale Factor,Interval (s),Precision,Deadband
temp\old_value1,temp\new_value1,real,1,20,2,0
temp\old_value2,temp\new_value2,integer,10,100,0,0
temp\old_value3,temp\new_value3,real,1.5,100,2,0
temp\old_value4,temp\new_value4,boolean,1,9,0,0
temp\old_value5,temp\new_value5,real,1,20,2,0
temp\old_value6,temp\new_value6,integer,10,100,0,0
temp\old_value7,temp\new_value7,real,1.5,100,2,0
temp\old_value8,temp\new_value8,boolean,1,9,0,0
temp\old_value9,temp\new_value9,real,1,10,2,0
temp\old_value10,temp\new_value10,integer,1,10,0,0
temp\old_value11,temp\new_value11,real,1,10,4,0
temp\old_value12,temp\new_value12,boolean,1,10,0,0
temp\old_value13,temp\new_value13,real,1,12,4,0
temp\old_value14,temp\new_value14,integer,1,13,0,0
temp\old_value15,temp\new_value15,real,1,14,4,0
temp\old_value16,temp\new_value16,boolean,1,15,0,0
11959,temp\new_value1,real,1,20,2,0.01
5153,temp\new_value2,integer,1,100,0,0
5154,temp\new_value3,real,1,30,0,1
5155,temp\new_value4,boolean,1,9,0,0
5,temp\new_value5,real,1,20,2,0
6,temp\new_value6,integer,10,100,0,0
227,temp\new_value7,real,1.5,100,2,0
8,temp\new_value8,boolean,1,9,0,0
9,temp\new_value9,real,1,10,2,0
10,temp\new_value10,integer,1,10,0,0
011,temp\new_value11,real,1,10,4,0
12,temp\new_value12,boolean,1,10,0,0
1113,temp\new_value13,real,1,12,4,0
14,temp\new_value14,integer,1,13,0,0
1665,temp\new_value15,real,1,14,4,0
16,temp\new_value16,boolean,1,15,0,0

1 Source Name Destination Name Data Type Scale Factor Interval (s) Precision Deadband
2 temp\old_value1 11959 temp\new_value1 real 1 20 2 0 0.01
3 temp\old_value2 5153 temp\new_value2 integer 10 1 100 0 0
4 temp\old_value3 5154 temp\new_value3 real 1.5 1 100 30 2 0 0 1
5 temp\old_value4 5155 temp\new_value4 boolean 1 9 0 0
6 temp\old_value5 5 temp\new_value5 real 1 20 2 0
7 temp\old_value6 6 temp\new_value6 integer 10 100 0 0
8 temp\old_value7 227 temp\new_value7 real 1.5 100 2 0
9 temp\old_value8 8 temp\new_value8 boolean 1 9 0 0
10 temp\old_value9 9 temp\new_value9 real 1 10 2 0
11 temp\old_value10 10 temp\new_value10 integer 1 10 0 0
12 temp\old_value11 011 temp\new_value11 real 1 10 4 0
13 temp\old_value12 12 temp\new_value12 boolean 1 10 0 0
14 temp\old_value13 1113 temp\new_value13 real 1 12 4 0
15 temp\old_value14 14 temp\new_value14 integer 1 13 0 0
16 temp\old_value15 1665 temp\new_value15 real 1 14 4 0
17 temp\old_value16 16 temp\new_value16 boolean 1 15 0 0

301
main.py
View File

@ -3,6 +3,9 @@ import toml
import sys
import os
import requests
import pyodbc
import subprocess
import time
from typing import List, Union
from datetime import datetime, timezone, timedelta
@ -38,13 +41,127 @@ class HistoricalTag:
def __repr__(self):
return f"({self.row}, {self.tag_type}, {self.name_source}, {self.name_dest}, {self.scale_factor}, {self.interval}, {self.precision}, {self.deadband})"
# ----------------------
# Functions
# ----------------------
# clearscada_generate_historical_ids()
# ----------------------
# Generates a list of historical IDs for found historic files
def clearscada_generate_historical_ids(historic_files: str):
ids = []
for directory in os.listdir(historic_files):
if os.fsdecode(directory).startswith("Historic "):
ids.append(int(directory[9:15]))
output_file = os.path.join(output_path, "CS_HistoricIDs.CSV")
with open(output_file, mode='w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
for id in ids:
if id is not None:
csv_writer.writerow([str(id)])
# clearscada_query()
# ----------------------
# Query ClearSCADA raw historical files using the ClearSCADA command line tool to create
# csv data from the raw data files, then process and merge the data into VTScada formats
def clearscada_query(historical_tags: List[HistoricalTag], start_time: datetime, end_time: datetime):
dir_path = output_path + str(start_time.year) + "\\"
create_directory(dir_path)
current_start_time = start_time
current_end_time = end_time
start_week = weeks_since_date(current_start_time.timestamp())
end_week = weeks_since_date(current_end_time.timestamp())
historic_directories = []
tags = []
# Get a list of all directories of Historic files (format is Historic ID with ID padded with leading zeroes) needed which exist
for tag in historical_tags:
# For ClearSCADA, the tag source is the ID code
padded_id = f'{int(tag.name_source):06}'
# Check that directory exists and if so, add it to a list
path = os.path.join(historic_files, "Historic " + padded_id)
if os.path.exists(path):
historic_directories.append(path)
tags.append(tag)
zipped_directories = zip(historic_directories, tags)
# For each found historic directory execute the ClearSCADA CSV command
tag_mappings = []
for (path, tag) in zipped_directories:
# print(path, tag.name_dest)
command = os.path.join(install_location, "SCXCMD.exe")
for file in os.listdir(path):
if os.fsdecode(file).endswith(".HRD"):
week_number = int(file[2:8])
if week_number >= start_week and week_number <= end_week:
argument = os.path.join(path, file)
subprocess.run([command, "HISDUMP", argument])
# Process each directory of CSVs first into a list of values that can be pruned
values = []
output_file = ""
for file in os.listdir(path):
if os.fsdecode(file).endswith(".csv"):
csv_file = os.path.join(path, file)
values.extend(read_clearscada_file(csv_file))
# Values will have had their deadband and scaling processed, but remaining is excess frequency
if len(values) > 0:
values = postprocess_values(values)
output_file = prepare_file_for_tag(
tag, values, dir_path, current_end_time, True)
tag_mappings.append((output_file, tag.name_dest))
write_tagmapping_to_file(
dir_path + "TagMapping.csv", tag_mappings)
# main_directory = os.fsencode(historic_files)
# clearscada_read_file()
# ----------------------
# Read in a ClearSCADA CSV file converted from HRD into a list of timestamps and values
def clearscada_read_file(file_path: str) -> List[Union[int, float, None]]:
values = []
with open(file_path, mode='r', encoding='utf-8-sig') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=',')
next(csv_reader) # Skip the header row
for row, line in enumerate(csv_reader):
if line[2] == "Good":
timestamp = datetime.timestamp(
datetime.strptime(line[0], "%d/%m/%Y %H:%M:%S"))
value = float(line[1])
values.append((timestamp, value))
return values
# compress_and_scale_real()
# ----------------------
# -- Deadband (only keeping values which change by the required amount)
# -- Precision (decimal places, cleaning up excess data from floating points)
# -- Scaling factor (applies the scaling factor to the value before assigning the precision)
def compress_and_scale_real(values: List[Union[int, float, None]], deadband: float, scale_factor: float, precision: int) -> List[Union[int, float, None]]:
compressed_values = []
working_value = None
@ -64,6 +181,9 @@ def compress_and_scale_real(values: List[Union[int, float, None]], deadband: flo
# compress_boolean()
# ----------------------
# Compress a set of timestamp and boolean values to transitions. For booleans, transitions are
# kept and the assumption is
# the interval will be fast enough to keep all transitions.
def compress_boolean(values: List[Union[int, float, None]]) -> List[Union[int, float, None]]:
@ -84,14 +204,64 @@ def compress_boolean(values: List[Union[int, float, None]]) -> List[Union[int, f
# create_directory()
# ----------------------
# Create a directory if it doesn't exist
def create_directory(path):
if not os.path.exists(path):
os.makedirs(path)
# postprocess_values()
# ----------------------
# Process a list of values assumed and clean up timestamps which are within the interval of the last
# timestamp. Values are assumed to already have been compressed
def postprocess_values(values: List[Union[int, float, None]]):
last_time = time.time()
processed_values = []
for (timestamp, value) in values:
timedelta = abs(last_time - timestamp)
if timedelta > 50:
processed_values.append((timestamp, value))
last_time = timestamp
last_time = timestamp
return processed_values
# prepare_file_for_tag()
# ----------------------
def prepare_file_for_tag(tag: HistoricalTag, values: List[Union[int, float, None]], dir_path: str, current_end_time: datetime, append=False) -> str:
if values is None:
print("No values found")
return ""
else:
output_file = ""
if tag.tag_type == "real" or tag.tag_type == "integer":
compressed_values = compress_and_scale_real(
values, tag.deadband, tag.scale_factor, tag.precision)
else:
compressed_values = compress_boolean(values)
if len(compressed_values) != 0:
output_file = tag.name_source.replace('\\', '_') + "_" + str(current_end_time.year) + str(
current_end_time.month) + str(current_end_time.day) + ".csv"
full_output_file = dir_path + output_file
write_values_to_file(full_output_file, compressed_values, True)
return output_file
# print_text()
# ----------------------
# Print formatting a text line for debugging and such
def print_text(text: str):
@ -99,11 +269,33 @@ def print_text(text: str):
print(text)
print(r'-------------------------------------------------------------------------------------------------------')
# query_vtscada_tag()
# read_tags()
# ----------------------
# Read in the list of tags and set the mapping parameters for each tag and construct the groupings required for the
# query
def query_vtscada_tag(historical_tag: HistoricalTag, ft_start_time: datetime, ft_end_time: datetime) -> List[Union[int, float, None]]:
def read_tags(file_path: str) -> List[HistoricalTag]:
historical_tags = []
with open(file_path, mode='r', encoding='utf-8-sig') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=',')
next(csv_reader) # Skip the header row
for row, line in enumerate(csv_reader):
name_source, name_dest, tag_type, scale_factor, interval, precision, deadband = line
tag = HistoricalTag(row=row+1, tag_type=tag_type, name_source=name_source, name_dest=name_dest,
scale_factor=float(scale_factor), interval=int(interval), precision=int(precision), deadband=float(deadband))
historical_tags.append(tag)
return historical_tags
# vtscada_tag_query()
# ----------------------
# Given a HistoricalTag structure, query the tag's values from the start time to the end time
def vtscada_tag_query(historical_tag: HistoricalTag, ft_start_time: datetime, ft_end_time: datetime) -> List[Union[int, float, None]]:
# Query average only for real values (Analog in VTScada)
if historical_tag.tag_type == "real":
value_string = ":Value:Average"
@ -125,11 +317,13 @@ def query_vtscada_tag(historical_tag: HistoricalTag, ft_start_time: datetime, ft
return returned['results']['values']
# query_vtscada()
# vtscada_query()
# ----------------------
# Given the set of HistoricalTags and a start and end time, query the data of those tags from the
# REST interface
def query_vtscada(historical_tags: List[HistoricalTag], start_time: datetime, end_time: datetime):
def vtscada_query(historical_tags: List[HistoricalTag], start_time: datetime, end_time: datetime):
current_start_time = start_time
current_end_time = start_time + timedelta(days=1)
@ -147,7 +341,7 @@ def query_vtscada(historical_tags: List[HistoricalTag], start_time: datetime, en
tag_mappings = []
for tag in historical_tags:
values = query_vtscada_tag(tag, ft_start_time, ft_end_time)
values = vtscada_tag_query(tag, ft_start_time, ft_end_time)
output_file = prepare_file_for_tag(
tag, values, dir_path, current_end_time)
@ -160,37 +354,34 @@ def query_vtscada(historical_tags: List[HistoricalTag], start_time: datetime, en
current_start_time += timedelta(days=1)
current_end_time += timedelta(days=1)
# prepare_file_for_tag()
# write_tagmappings_to_file()
# ----------------------
# Create a new TagMapping.CSV file which contains the mapping of all tag names and files which
# contain their CSV data
def prepare_file_for_tag(tag: HistoricalTag, values: List[Union[int, float, None]], dir_path: str, current_end_time: datetime) -> str:
if values is None:
print("No values found")
return ""
else:
output_file = ""
def write_tagmapping_to_file(output_file: str, tag_mappings: List[str]):
with open(output_file, mode='a', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
if tag.tag_type == "real" or tag.tag_type == "integer":
compressed_values = compress_and_scale_real(
values, tag.deadband, tag.scale_factor, tag.precision)
else:
compressed_values = compress_boolean(values)
if len(compressed_values) != 0:
output_file = tag.name_source.replace('\\', '_') + "_" + str(current_end_time.year) + str(
current_end_time.month) + str(current_end_time.day) + ".csv"
full_output_file = dir_path + output_file
write_values_to_file(full_output_file, compressed_values)
return output_file
for mapping in tag_mappings:
csv_writer.writerow(mapping)
# write_values_to_file()
# ----------------------
# Given a full path name of a file and list of timestamp, value pairs, write the values to a
# CSV file with each pair on its own row.
def write_values_to_file(output_file: str, values: List[Union[int, float, None]]):
with open(output_file, mode='w', newline='', encoding='utf-8') as csvfile:
def write_values_to_file(output_file: str, values: List[Union[int, float, None]], append=False):
if append:
csv_mode = 'a'
else:
csv_mode = 'w'
with open(output_file, mode=csv_mode, newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
for value_pair in values:
@ -201,37 +392,21 @@ def write_values_to_file(output_file: str, values: List[Union[int, float, None]]
'%Y-%m-%d %H:%M:%S.%f')[:-3]
csv_writer.writerow([formatted_timestamp, value])
# write_tagmappings_to_file()
# weeks_since_date()
# ----------------------
# Returns the number of weeks since the given timestamp, or defaults to December 25th, 1600
def write_tagmapping_to_file(output_file: str, tag_mappings: List[str]):
with open(output_file, mode='a', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
def weeks_since_date(timestamp, date=(1600, 12, 25)):
dt = datetime.utcfromtimestamp(timestamp)
start_date = datetime(*date)
delta = dt - start_date
weeks = delta.days // 7
for mapping in tag_mappings:
csv_writer.writerow(mapping)
return weeks
# read_tags()
# ----------------------
# Read in the list of tags and set the mapping parameters for each tag and construct the groupings required for the
# query
def read_tags(file_path: str) -> List[HistoricalTag]:
historical_tags = []
with open(file_path, mode='r', encoding='utf-8-sig') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=',')
next(csv_reader) # Skip the header row
for row, line in enumerate(csv_reader):
name_source, name_dest, tag_type, scale_factor, interval, precision, deadband = line
tag = HistoricalTag(row=row+1, tag_type=tag_type, name_source=name_source, name_dest=name_dest,
scale_factor=float(scale_factor), interval=int(interval), precision=int(precision), deadband=float(deadband))
historical_tags.append(tag)
return historical_tags
# ----------------------
# Main Section
# ----------------------
@ -252,10 +427,6 @@ system_timezone = config['system']['system_timezone']
application_user = config['user']['application_user']
application_pass = config['user']['application_pass']
server = config['vtscada']['server_name']
realm_port = config['vtscada']['realm_port']
realm_name = config['vtscada']['realm_name']
if len(sys.argv) == 4:
query_type = sys.argv[1]
@ -273,10 +444,22 @@ if len(sys.argv) == 4:
if query_type == "VTScada":
print_text('VTScada Data Query')
query_vtscada(historical_tags, start_time, end_time)
server = config['vtscada']['server_name']
realm_port = config['vtscada']['realm_port']
realm_name = config['vtscada']['realm_name']
vtscada_query(historical_tags, start_time, end_time)
elif query_type == "AVEVA":
print_text('AVEVA Historian - Not Implemented')
elif query_type == "ClearSCADA":
print_text('ClearSCADA - Not Implemented')
print_text('ClearSCADA - Query Raw Historic Files')
historic_files = config['clearscada']['historic_files']
install_location = config['clearscada']['install_location']
delete_processed = config['clearscada']['delete_processed']
clearscada_generate_historical_ids(historic_files)
clearscada_query(historical_tags, start_time, end_time)
else:
print("Invalid arguments!")

View File

@ -12,6 +12,12 @@ server_name = "lb-vanryn"
realm_port = "8888"
realm_name = "RESTRealm"
[clearscada]
historic_files = "C:\\ProgramData\\Schneider Electric\\ClearSCADA\\Database\\HisFiles"
install_location = "C:\\Program Files (x86)\\Schneider Electric\\ClearSCADA"
# Set true to clear out the Historic files as they are processed
delete_processed = false
[user]
application_user = "query"
application_pass = "queryuser"